5 research outputs found

    Control of posture with FES systems

    Get PDF
    One of the major obstacles in restoration of functional FES supported standing in paraplegia is the lack of knowledge of a suitable control strategy. The main issue is how to integrate the purposeful actions of the non-paralysed upper body when interacting with the environment while standing, and the actions of the artificial FES control system supporting the paralyzed lower extremities. In this paper we provide a review of our approach to solving this question, which focuses on three inter-related areas: investigations of the basic mechanisms of functional postural responses in neurologically intact subjects; re-training of the residual sensory-motor activities of the upper body in paralyzed individuals; and development of closed-loop FES control systems for support of the paralyzed joints

    Development of an Apparatus for Bilateral Rhythmical Training of Arm Movement Via Linear and Elliptical Trajectories of Various Directions

    No full text
    Clinical rehabilitation of individuals with various neurological disorders requires a significant number of movement repetitions in order to improve coordination and restoration of appropriate muscle activation patterns. Arm reaching movement is frequently practiced via motorized arm cycling ergometers where the trajectory of movement is circular thus providing means for practicing a single and rather nonfunctional set of muscle activation patterns, which is a significant limitation. We have developed a novel mechanism that in the combination with an existing arm ergometer device enables nine different movement modalities/trajectories ranging from purely circular trajectory to four elliptical and four linear trajectories where the direction of movement may be varied. The main objective of this study was to test a hypothesis stating that different movement modalities facilitate differences in muscle activation patterns as a result of varying shape and direction of movement. Muscle activation patterns in all movement modalities were assessed in a group of neurologically intact individuals in the form of recording the electromyographic (EMG) activity of four selected muscle groups of the shoulder and the elbow. Statistical analysis of the root mean square (RMS) values of resulting EMG signals have shown that muscle activation patterns corresponding to each of the nine movement modalities significantly differ in order to accommodate to variation of the trajectories shape and direction. Further, we assessed muscle activation patterns following the same protocol in a selected clinical case of hemiparesis. These results have shown the ability of the selected case subject to produce different muscle activation patterns as a response to different movement modalities which show some resemblance to those assessed in the group of neurologically intact individuals. The results of the study indicate that the developed device may significantly extend the scope of strength and coordination training in stroke rehabilitation which is in current clinical rehabilitation practice done through arm cycling
    corecore